Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(18): e2311831, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38253422

RESUMO

Controlling the multi-state switching is significantly essential for the extensive utilization of 2D ferromagnet in magnetic racetrack memories, topological devices, and neuromorphic computing devices. The development of all-electric functional nanodevices with multi-state switching and a rapid reset remains challenging. Herein, to imitate the potentiation and depression process of biological synapses, a full-current strategy is unprecedently established by the controllable resistance-state switching originating from the spin configuration rearrangement by domain wall number modulation in Fe3GeTe2. In particular, a strong correlation is uncovered in the reduction of domain wall number with the corresponding resistance decreasing by in-situ Lorentz transmission electron microscopy. Interestingly, the magnetic state is reversed instantly to the multi-domain wall state under a single pulse current with a higher amplitude, attributed to the rapid thermal demagnetization by simulation. Based on the neuromorphic computing system with full-current-driven artificial Fe3GeTe2 synapses with multi-state switching, a high accuracy of ≈91% is achieved in the handwriting image recognition pattern. The results identify 2D ferromagnet as an intriguing candidate for future advanced neuromorphic spintronics.

2.
Front Genet ; 14: 1109991, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36992705

RESUMO

Background: Kidney renal clear cell carcinoma (KIRC) is a representative histologic subtype of renal cell carcinoma (RCC). RCC exhibits a strong immunogenicity with a prominent dysfunctional immune infiltration. Complement C1q C chain (C1QC) is a polypeptide in serum complement system and is involved in tumorigenesis and the modulation of tumor microenvironment (TME). However, researches have not explored the effect of C1QC expression on prognosis and tumor immunity of KIRC. Methods: The difference in a wide variety of tumor tissues and normal tissues in terms of the C1QC expression was detected using TIMER and TCGA portal databases, and further validation of protein expression of C1QC was conducted via Human Protein Atlas. Then, the associations of C1QC expression with clinicopathological data and other genes were studied with the use of UALCAN database. Subsequently, the association of C1QC expression with prognosis was predicted by searching the Kaplan-Meier plotter database. A protein-protein interaction (PPI) network with the Metascape database was built using STRING software, such that the mechanism underlying the C1QC function can be studied in depth. The TISCH database assisted in the evaluation of C1QC expression in different cell types in KIRC at the single-cell level. Moreover, the association of C1QC and the infiltration level of tumor immune cell was assessed using TIMER platform. The TISIDB website was selected to deeply investigate the Spearman correlation between C1QC and immune-modulator expression. Lastly, how C1QC affected the cell proliferation, migration, and invasion in vitro was assessed using knockdown strategies. Results: KIRC tissues had notably upregulated C1QC level in comparison with adjacent normal tissues, with showed a positive relevance to clinicopathological features including tumor stage, grade, and nodal metastasis, and a negative relevance to clinical prognosis in KIRC. C1QC knockdown inhibited KIRC cell proliferation, migration, and invasion, as indicated by the results of the in vitro experiment. Furthermore, functional and pathway enrichment analysis demonstrated that C1QC was involved in immune system-related biological processes. According to single-cell RNA analysis, C1QC exhibited a specific upregulation in macrophages cluster. Additionally, there was an obvious association of C1QC and a wide variety of tumor-infiltrating immune cells in KIRC. Also, high C1QC expression presented inconsistent prognosis in different enriched immune cells subgroups in KIRC. Immune factors might contribute to C1QC function in KIRC. Conclusion: C1QC is qualified to predict KIRC prognosis and immune infiltration biologically. Targeting C1QC may bring new hope for the treatment of KIRC.

3.
Small ; 19(25): e2300363, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36929568

RESUMO

Although assembled hollow architectures have received considerable attention as lightweight functional materials, their uncontrollable self-aggregation and tedious synthetic methods hinder precise construction and modulation. Therefore, this study proposes a bi-ion synergistic regulation strategy to design assembled hollow-shaped cobalt spinel oxide microspheres. Dominated by the coordination-etching effects of F- and the hydrolysis-complex contributions of NH4 + , the unique construction is formed attributed to the dynamic cycles between metal complexes and precipitates. Meanwhile, their basic structures are perfectly retained after reduction treatment, enabling FeCo/CoFe2 O4 bimagnetic system to be obtained. Subsequently, in-depth analyses are conducted. Investigations reveal that multiscale magnetic coupling networks and enriched air-material heterointerfaces contribute to the remarkable magnetic-dielectric behavior, supported by the advanced off-axis electron holography technique. Consequently, the obtained FeCo/CoFe2 O4 composites exhibit excellent microwave absorption performances with minimal reflection losses (RLmin ) as high as -51.6 dB, an effective absorption bandwidth (EAB) of 4.7 GHz, and a matched thickness of 1.4 mm. Thus, this work provides an informative guide for rationally assembling building blocks into hollow architectures as advanced microwave absorbers through bi-ion and even multi-ion synergistic engineering mechanisms.

4.
Nature ; 615(7952): 405-410, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36813970

RESUMO

An outstanding challenge in condensed-matter-physics research over the past three decades has been to understand the pseudogap (PG) phenomenon of the high-transition-temperature (high-Tc) copper oxides. A variety of experiments have indicated a symmetry-broken state below the characteristic temperature T* (refs. 1-8). Among them, although the optical study5 indicated the mesoscopic domains to be small, all these experiments lack nanometre-scale spatial resolution, and the microscopic order parameter has so far remained elusive. Here we report, to our knowledge, the first direct observation of topological spin texture in an underdoped cuprate, YBa2Cu3O6.5, in the PG state, using Lorentz transmission electron microscopy (LTEM). The spin texture features vortex-like magnetization density in the CuO2 sheets, with a relatively large length scale of about 100 nm. We identify the phase-diagram region in which the topological spin texture exists and demonstrate the ortho-II oxygen order and suitable sample thickness to be crucial for its observation by our technique. We also discuss an intriguing interplay observed among the topological spin texture, PG state, charge order and superconductivity.

5.
ACS Nano ; 16(11): 19319-19327, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36349969

RESUMO

Recent observations of topological meron textures in two-dimensional (2D) van der Waals (vdW) magnetic materials have attracted considerable research interest for both fundamental physics and spintronic applications. However, manipulating the meron textures and realizing the topological transformations, which allow for exploring emergent electromagnetic behaviors, remain largely unexplored in 2D magnets. In this work, utilizing real-space imaging and micromagnetic simulations, we reveal temperature- and thickness-dependent topological magnetic transformations among domain walls, meron textures, and stripe domain in Fe5GeTe2 (FGT) lamellae. The key mechanism of the magnetic transformations can be attributed to the temperature-induced change of exchange stiffness constant within layers and uniaxial magnetic anisotropy, while the magnetic dipole interaction as governed by sample thickness is crucial to affect the critical transformation temperature and stripe period. Our findings provide reliable insights into the origin and manipulation of topological spin textures in 2D vdW ferromagnets.

6.
ACS Nano ; 16(10): 15927-15934, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36166823

RESUMO

Studies of the diffusion dynamics of magnetic skyrmions have generated widespread interest in both fundamental physics and spintronics applications. Here we report the magnetic-field-assisted diffusion motion of skyrmions in a microstructured chiral FeGe magnet. We demonstrate the enhancement of diffusion motion of magnetic skyrmions that is manipulated and driven by an oscillatory magnetic field. Further, the directed diffusion of skyrmions is observed when an in-plane field was introduced to break the symmetry of the system. Finally, we demonstrate the application of a magnetic field can induce an arrangements transition of skyrmions assemble in microstructure, that is, from a stiff hexagonal lattice to a weak interactional isotropic state. By using a step-ascended magnetic field we finished the observation of a particle-like diffusive motion for magnetic skyrmions that transport from high-concentration regions to low-concentration regions and the diffusion flux is proportional to the concentration gradient followed Fick's law.

7.
Sex Med ; 10(2): 100483, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35045372

RESUMO

BACKGROUND: Thulium laser (Tm:YAG) prostate surgery is a safe and effective procedure with low morbidity and comparable clinical outcomes to those of transurethral resection of the prostate (TURP). However, the sexual function outcomes (erectile and ejaculatory function) have been scarcely studied. AIM: We aimed to assess the impact of Tm:YAG prostate surgery on sexual outcomes (erectile and ejaculatory function) and compare them with those patients undergoing TURP. MATERIAL AND METHODS: We searched digital databases like PUBMED, SCOPUS, CENTRAL and EMBASE using relevant keywords to identify comparative studies on TURP and non-comparative studies on Tm:YAG prostate surgery that assessed sexual outcomes. We performed qualitative and quantitative analyses with the extracted data. We carried out a meta-analysis to compare postoperative International Index of Erectile Function (IIEF-5) scores and incidences of retrograde ejaculation (RE) in patients undergoing either Tm:YAG or TURP. The pre-operative and post-operative IIEF-5 scores were pooled to estimate overall scores. RESULTS: We included 5 comparative and 8 non-comparative studies in this review. We found the postoperative IIEF-5 score improvements to be significantly higher in the Tm:YAG prostate surgery group than in the TURP group with a significant mean difference (MD) of 0.45 (95% CI, 0.18 to 0.72; P = .001). We found no significant associations between the procedures. The pooled OR for the association of RE was estimated at 0.90 (95% CI, 0.50 to 1.60; P = .71; I2 = 0%). CONCLUSION: Tm:YAG prostate surgery improves erectile function more than TURP, according to our findings. Tm:YAG prostate aided surgery also outperforms TURP in terms of preserving sexual function following surgery.However, We found similar or no difference in incidence of RE between Tm:YAG prostate surgery and TURP. Bibo L, Hao L, Pang K, et al. Assessment of Sexual Outcomes in Patients Undergoing Thulium Laser Prostate Surgery for Management of Benign Prostate Hyperplasia: A Systematic Review and Meta-analysis. Sex Med 2022;10:100483.

8.
ACS Nano ; 15(12): 19513-19521, 2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-34894654

RESUMO

Recently, two-dimensional magnetic material has attracted attention worldwide due to its potential application in magnetic memory devices. The previous concept of domain walls driven by current pulses is a disordered motion. Further investigation of the mechanism is urgently lacking. Here, Fe3GeTe2, a typical high-Curie temperature (TC) two-dimensional magnetic material, is chosen to explore the magnetic domain dynamics by in situ Lorentz transmission electron microscopy experiments. It has been found that the stripe domain could be driven, compressed, and expanded by the pulses with a critical current density. Revealed by micromagnetic simulations, all the domain walls cannot move synchronously due to the competition between demagnetization energy and spin-transfer torque effect. In consideration of the reflection of high-frequency pulses, the disordered motion could be well explained together. The multiple stable states of the magnetic structure due to the weak exchange interaction in a two-dimensional magnet provides complex dynamic processes. Based on plenty of experiments, a cluster of domain walls could be more steady and move more synchronously under the drive of pulse current. The complication of domain wall motions presents a challenge in race track memory devices and two-dimensional magnetic material will be a better choice for application research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...